Function to draw a multivari chart
multivari.Rd
A multivari chart of one quantitative response variable depending on two to four categorical variables can be drawn.
Arguments
- var
variable name (character string) or column index of response variable, required
- fac1
variable name (character string) or column index of first level factor, required; precedes
fac2
andfac3
(if present) in the hierarchy (see Details)- fac2
variable name (character string) or column index of second level factor, required; follows
fac1
and precedesfac3
(if present) in the hierarchy (see Details)- fac3
variable name (character string) or column index of third level factor, optional; if present,
fac3
is the last factor in the hierarchy (see Details)- fac4
variable name (character string) or column index of fourth level factor, optional; can only be specified if there is also a third level factor; if present, this factor is the first in the hierarchy (see Details), and separate multivari charts for the first three factors are drawn for each level of this factor
- data
a data frame, required
- sort
logical, specifying whether or not levels are sorted, when converting character vectors to factors (a single choice for all factors is needed); default:
FALSE
- fun
a function to be used in aggregation; default:
mean
- pch
a list of length 2 or 3, depending on whether or not
fac3
is specified; the ith list element can be an individual plotting symbol (like the usualpch
entry) or a vector of plot symbols for each level offac_i
- col
a list of length 2 or 3, depending on whether or not
fac3
is specified; the ith list element can be an individual color or a vector of colors for each level offac_i
; this color specification is used for the plot symbols offac_i
levels and for the lines connecting the symbols for the next level in the hierarchy- col0
the color for the first line to be drawn
- cex
the size of axis annotation text (annotation of the fourth level header is 1.5 times this size)
- fac.cex
a multiplier for
cex
; plot symbol sizes arefac.cex*cex
; default: 2- xlab.depth
labels for the horizontal axis are printed down to this level of the hierarchy (default: 3); if the depth is reduced, different plot symbols should be used, and a legend should be drawn
- legend
logical determining whether or not a legend should be drawn (default: FALSE); the function determines wether top right or bottom right yields a better position (it is not guaranteed that there is no overlab); if this does not work well, one can manually draw a legend in the outer margin
- main
title, as usual; a default is provided
- add
logical; add to an existing plot (which of course has to have suitable axis limits)?; default: FALSE; note that horizontal axis labeling will always be printed by function multivari, while vertical axis labeling will be omitted for
add=TRUE
- ...
further arguments to functions
plot
,lines
,points
,mtext
Details
The function is inspired by Minitabs behavior for multivari charts (see also Bruno Scibilia's blog which is linked in the references). It does not attempt to visualize individual observations.
A multivari chart mainly serves exploratory purposes.
It works particularly well with balanced data, but can also be used for messy data.
multivari
can visualize the dependence of a single quantitative variable on up to four factors (i.e., interactions of order up to four can be visualized). The display is hierarchical: for factors later in the hierarchy, conditional means given level combinations of factors earlier in the hierarchy are displayed. Therefore, the order of the
factors can make a big difference in the display. If there is no natural
order, it may be worthwhile to inspect several orders.
For interactions with two factors only, it is often preferrable to use
function interaction.plot
or raw.means.plot
.
References
Scibilia, Bruno (2013). Using Multi-Vari Charts to Analyze Families of Variations. https://blog.minitab.com/en/using-variability-charts-to-analyze-call-center-wait-times.
See also
See also interaction.plot
, raw.means.plot
Examples
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.
if (FALSE) {
require(car)
multivari("cycles", "len", "load", "amp", data=Wool,
col=list("black","red",c("grey70","grey45","grey20")),
pch=list(15,17,8), legend=TRUE, xlab.depth = 2, lwd=2)
multivari("cycles", "load", "len", "amp", data=Wool,
col=list("black",c("red","blue","darkgreen"),
c("grey70","grey45","grey20")),
pch=list(15,17,8), legend=TRUE, xlab.depth = 2, lwd=2)
## create a fake fourth factor
fakedat <- rbind(cbind(newfac="blabla",Wool),cbind(newfac="albalb",Wool))
## make it character for demonstrating the effect of sort option
fakedat$newfac <- as.character(fakedat$newfac)
## default: sort order in the data is respected (order of unique is used)
multivari("cycles", "load", "len", "amp", "newfac", data=fakedat,
col=list("black",c("red","blue","darkgreen"),
c("grey70","grey45","grey20")),
pch=list(15,17,8), legend=TRUE, xlab.depth = 2, lwd=2, cex=0.8)
## sort=TRUE: levels are sorted (order of sort(unique))
multivari("cycles", "load", "len", "amp", "newfac", data=fakedat,
col=list("black",c("red","blue","darkgreen"),
c("grey70","grey45","grey20")),
pch=list(15,17,8), legend=TRUE, xlab.depth = 2, lwd=2, cex=0.8,
sort=TRUE)
}